The locomotor kinematics of Asian and African elephants: changes with speed and size.
نویسندگان
چکیده
For centuries, elephant locomotion has been a contentious and confusing challenge for locomotion scientists to understand, not only because of technical difficulties but also because elephant locomotion is in some ways atypical of more familiar quadrupedal gaits. We analyzed the locomotor kinematics of over 2400 strides from 14 African and 48 Asian elephant individuals (body mass 116-4632 kg) freely moving over ground at a 17-fold range of speeds, from slow walking at 0.40 m s(-1) to the fastest reliably recorded speed for elephants, 6.8 m s(-1). These data reveal that African and Asian elephants have some subtle differences in how size-independent kinematic parameters change with speed. Although elephants use a lateral sequence footfall pattern, like many other quadrupeds, they maintain this footfall pattern at all speeds, shifting toward a 25% phase offset between limbs (singlefoot) as they increase speed. The duty factors of elephants are greater for the forelimbs than for the hindlimbs, so an aerial phase for the hindquarters is reached at slower speeds than for the forequarters. This aerial phase occurs at a Froude number of around 1, matching theoretical predictions. At faster speeds, stance and swing phase durations approach asymptotes, with the duty factor beginning to level off, concurrent with an increase in limb compliance that likely keeps peak forces relatively low. This increase of limb compliance is reflected by increased compression of the hindlimbs. Like other tetrapods, smaller elephants are relatively more athletic than larger ones, but still move very similarly to adults even at <500 kg. At any particular speed they adopt greater relative stride frequencies and relative stride lengths compared to larger elephants. This extends to near-maximal locomotor performance as well - smaller elephants reach greater Froude numbers and smaller duty factors, hence likely reach relatively greater peak loads on their limbs and produce this force more rapidly. A variety of lines of kinematic evidence support the inference that elephants change their mechanics near a Froude number of 1 (if not at slower speeds), at least to using more compliant limbs, if not spring-like whole-body kinetics. In some ways, elephants move similarly to many other quadrupeds, such as increasing speed mainly by increasing stride frequency (except at fast speeds), and they match scaling predictions for many stride parameters. The main difference from most other animals is that elephants never change their footfall pattern to a gait that uses a whole-body aerial phase. Our large dataset establishes what the normal kinematics of elephant locomotion are, and can also be applied to identify gait abnormalities that may signal musculoskeletal pathologies, a matter of great importance to keepers of captive elephants.
منابع مشابه
The three-dimensional locomotor dynamics of African (Loxodonta africana) and Asian (Elephas maximus) elephants reveal a smooth gait transition at moderate speed.
We examined whether elephants shift to using bouncing (i.e. running) mechanics at any speed. To do this, we measured the three-dimensional centre of mass (CM) motions and torso rotations of African and Asian elephants using a novel multisensor method. Hundreds of continuous stride cycles were recorded in the field. African and Asian elephants moved very similarly. Near the mechanically and meta...
متن کاملMinimum cost of transport in Asian elephants: do we really need a bigger elephant?
Body mass is the primary determinant of an animal's energy requirements. At their optimum walking speed, large animals have lower mass-specific energy requirements for locomotion than small ones. In animals ranging in size from 0.8 g (roach) to 260 kg (zebu steer), the minimum cost of transport (COT(min)) decreases with increasing body size roughly as COT(min)∝body mass (M(b))(-0.316±0.023) (95...
متن کاملThe movements of limb segments and joints during locomotion in African and Asian elephants.
As the largest extant terrestrial animals, elephants do not trot or gallop but can move smoothly to faster speeds without markedly changing their kinematics, yet with a shift from vaulting to bouncing kinetics. To understand this unusual mechanism, we quantified the forelimb and hindlimb motions of eight Asian elephants (Elephas maximus) and seven African elephants (Loxodonta africana). We used...
متن کاملThe Prevalence of some Intestinal Parasites in Food-Handlers of Asian and African Countries: A Meta-Analysis
Background & Aims of the Study: Parasitic infections are common in many countries, especially in developing countries and tropical areas. People who deal with foods can be a threat to health of communities. This meta-analysis study was undertaken to determine the prevalence of parasitic infections, such as Ascaris lumbricoides, Entamoeba coli, Entamoeba histolytica, and Giardia...
متن کاملFirst report of changes in leukocyte morphology in response to inflammatory conditions in Asian and African elephants (Elephas maximus and Loxodonta africana)
Although the hematology of healthy elephants has been well-described, published information on hematological changes during disease is limited. The objective of this study was to describe qualitative morphological changes in the leukocytes of Asian and African elephants (Elephas maximus and Loxodonta africana) diagnosed with a variety of inflammatory conditions. Twenty-five of 27 elephants had ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 209 Pt 19 شماره
صفحات -
تاریخ انتشار 2006